Uniclass EPIC L2123 + L7315 J3413 CI/SfB (52.5)

ACO Drain

ACO MultiDrain™ MD

ACO MultiDrain™ MD – channel drainage system

Technical Data

2

2

ACO MultiDrain[™] MD System

Technical Data

Contents

ACO MultiDrain MD – introduction to the system	Page 3
Channel range layout	Page 4

ACO MULTIDRAIN M100D SYSTEM

ACO M100D channels with UltraSTEEL" galvanised edge rails	Page 6
ACO Universal Gully	Page 8
ACO Drainlock Gratings	Page 9
ACO M100D gratings	Page 10
ACO M100DS channels with stainless steel edge rails	Page 12
ACO M100DS gratings – stainless steel	Page 14

ACO MULTIDRAIN M150D SYSTEM

ACO M150D channels with UltraSTEEL* galvanised edge rails	Page 15
ACO M150D gratings	Page 17
ACO M150DS channels with stainless steel	Page 18
ACO M150DS gratings – stainless steel	Page 20

ACO MULTIDRAIN M200D SYSTEM

Discreet slot drainage

ACO M200D channels with UltraSTEEL" galvanised edge rails	Page 21
ACO M200D gratings	Page 23
ACO M200DS channels with stainless steel edge rails	Page 24
ACO M200DS gratings – stainless steel	Page 26

ACO MULTIDRAIN: PROBLEM SOLVING DRAINAGE SOLUTIONS

Channel footpath drainage	Page 32
ACO MultiDrain MD Accessories – features, functions and benefits	Page 35

Page 27

Design Method	Page 38
Hydraulic Performance tables	Page 39
Installation details	Page 45
Chemical Resistance Chart	Page 46
Specification Clause / Recycled Content / CE Conformity	Page 47

ACO MultiDrain™ MD - Introduction to the system

ACO MultiDrain" MD benchmarks a new approach in the planning, delivery and installation of general purpose channel drainage systems. Designed to provide an effective solution for a wide variety of applications, ACO MultiDrain" MD system maximises functionality whilst using the minimum number of components.

The ACO MultiDrain™ MD polymer concrete channel drainage system is available in three widths; 100mm, 150mm and 200mm, and has a variety of depths and slopes. The channel units are certified to BS EN 1433: 2002 Load Class D 400* and form the main components of the system.

Depending on the load class and application requirement, a wide range of gratings are available to complete the system. You can now chose from a range of traditional and discreet slot drainage gratings, solid covers and cross footpath drainage units to ensure all applications are catered for.

All gratings within the system are fitted with ACO Drainlock", a bar-less locking device which reduces the risk of blockage and improves hydraulic capacity. The mechanism also provides for easy installation and maintenance of the system.

Applications:

- Commercial developments
- Discreet slot drainage
- Footpath drainage
- Landscaping
- Light industrial units
- Pedestrian precincts
- Private and public parking areas
- Residential developments
- Retail developments
- Sports and leisure
- Services ducts
- Schools
- Threshold drainage

All materials used in the manufacture and packaging of this system are 100% recyclable. In using the latest finite element analysis design packages, ACO have ensured minimum materials have been used for maximum performance.

The lightweight design not only aids installation but reduces carbon emission linked with the transportation of this product.

Problem solving drainage solution

ACO MultiDrain MD can provide a drainage solution for more specific and challenging applications.

Discreet slot, threshold and cross footpath drainage solutions can be supplied by selecting the appropriate channel, grating and accessories. Drainage solutions for these specific applications are detailed towards the end of this brochure.

ACO MULTIDRAIN MD IS SUITABLE FOR THE FOLLOWING APPLICATIONS:

Installation group	Load Class	Maximum Test Load (kN)	Vehicle	Typical Uses
1	A 15	15	Pedestrians and Cycles	Pedestrian, cycleways and domestic drives
2	B 125	125	Cars and Vans	Pedestrian precincts, light vehicles, private car parks and drives
3	C 250	250	Light Commercial Vehicles	Parking areas, service stations (cars) and slow-moving light commercial vehicles
4	D 400	400	HGVs	Parking areas for all types of vehicles*.

^{*}The ACO MultiDrain" MD system is not suitable for carriageways of public roads or motorways.

ACO MultiDrain™ MD System

Technical Data

Channel range layout

To support a wide variety of catchment depths, hydraulic capacities and applications, the system is available in three channel widths, 100mm, 150mm and 200mm and has a range of constant depths, shallow depth and sloping depth channels to suit the drainage design.

The layout below illustrates the channels and accessories available within the ACO MultiDrain MD range and to aid product selection, a summary of the function and feature of each component is provided.

All ACO MultiDrain MD channels can be purchased with galvanised or stainless steel edge rails.

Further details can be found on pages 6 - 33 of this brochure.

Shallow depth channels

- ▶ 100mm wide bore: Four shallow channel units are available in 1m lengths with an overall depth of 75mm or 100mm.
- ▶ 150mm wide bore: One shallow channel unit is available in 1m length with an overall depth of 100mm.
- 200mm wide bore: One shallow channel unit is available in 1m lengths with an overall depth of 100mm.

Standard option available includes vertical cast-in TPE seal for connection to Ø110mm pipework.

Constant depth channels

- 100mm wide bore: Four constant depth channel units are available in 1m lengths with overall depths ranging from 150mm to 300mm.
- ▶ 150mm wide bore: Three constant depth channel units are available in 1m lengths with overall depths ranging from 210mm to 310mm.
- 200mm wide bore: Three constant depth channel units are available in 1m lengths with overall depths ranging from 265mm to 365mm.

These channels include a vertical knockout for connection to Ø110mm (100mm wide bore channels) or Ø160mm (150mm and 200mm wide bore channels) pipework.

3 Constant depth channels - 0.5m

- 100mm wide bore: Four 0.5m constant depth channel units are available with overall depths ranging from 150mm to 300mm
- ▶ 150mm wide bore: Three 0.5m constant depth channels with overall depths ranging from 210mm to 310mm.
- 200mm wide bore: Three 0.5m constant depth channels with overall depths ranging from 265mm to 365mm.

These channels include vertical knockout for connection to Ø110mm (100mm wide bore) or Ø160mm (150mm and 200mm wide bore) pipework and side knockout for 90° channel connections.

4 Universal Sump

Each system width has one 0.5m universal sump for connection to all channels. Outlet options for Ø110mm and Ø160mm pipes and foul air traps. Plastic silt bucket provided with each unit.

6 Sloping depth channels

100mm wide bore: Twenty 1m sloping channels with 0.5% fall in depths from 150mm to 250mm.

6 Universal gully

One universal gully for all applications and channel widths from Load Class A 15 to D 400.

Multifunctional end cap

One plastic universal end cap for each channel width. Provides a closing or outlet option to Ø110mm (100mm wide bore channels) or Ø160mm (150mm and 200mm wide bore channels) pipes.

8 Step Connector

A polymer concrete unit which helps provide smooth water transition between constant depth channels when used in a stepped system design. The step connector is suitable for the 50mm step between each of the constant channel depths.

Guidance for using the ACO MultiDrain™ MD parts tables

The ACO MultiDrain™ MD parts tables are shown on the following pages. The product information is split down by channels widths and further by channel depth and edge rail type. This is to enable quick and simply product identification and selection.

The tables for ACO MultiDrain" MD channels list a number associated with the Invert Type. This number highlights the drainage design which can be achieved when using these channels. The key for the Invert Type is shown opposite.

Channel invert types

1 Constant Depth Invert

2 Sloping Invert

3 Stepped Invert

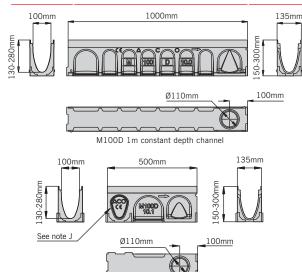
ACO MultiDrain™ MD System

Technical Data

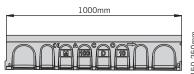
ACO MultiDrain™ M100D channels with UltraSTEEL™ galvanised edge rails.

ACO MultiDrain M100D channels are manufactured from polymer concrete, a tough and robust material which provides high chemical resistance. The channels are available in constant depth, sloping depth and shallow depth units.

ACO MultiDrain™ M100D channels listed below are provided with integral galvanised steel protective edge rails. For enhanced durability these rails are manufactured from UltraSTEEL™, a unique material that has improved strength over plain steel.


The added benefit of UltraSTEEL™ is that its greater surface area improves the bond between rail and adjacent material where a sealed system is required.

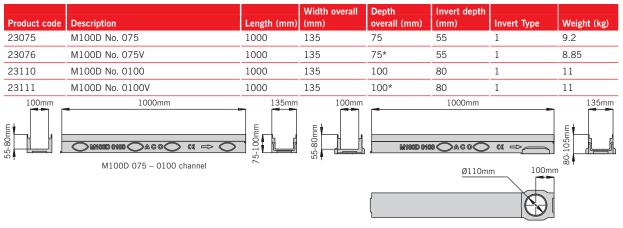
For the ACO MultiDrain™ M100D range of gratings to suit these channels please refer to page 10 and 11.


Constant and sloping depth channels with UltraSTEEL™ galvanised edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23000	M100D No. 0.0*	1000	135	150	130	1/3	13.2
23050	M100D No. 0.1J*	500	135	150	130	1/3	7.6
23001	M100D No. 1	1000	135	150/155	130/135	2	13.5
23002	M100D No. 2	1000	135	155/160	135/140	2	13.8
23003	M100D No. 3	1000	135	160/165	140/145	2	14.1
23004	M100D No. 4	1000	135	165/170	145/150	2	14.4
23005	M100D No. 5	1000	135	170/175	150/155	2	14.7
23006	M100D No. 6	1000	135	175/180	155/160	2	15.0
23007	M100D No. 7	1000	135	180/185	160/165	2	15.3
23008	M100D No. 8	1000	135	185/190	165/170	2	15.6
23009	M100D No. 9	1000	135	190/195	170/175	2	15.9
23010	M100D No.10	1000	135	195/200	175/180	2	16.2
23100	M100D No.10.0*	1000	135	200	180	1/3	16.2
23101	M100D No.10.1J*	500	135	200	180	1/3	9.2
23011	M100D No.11	1000	135	200/205	180/185	2	16.5
23012	M100D No.12	1000	135	205/210	185/190	2	16.8
23013	M100D No.13	1000	135	210/215	190/195	2	17.1
23014	M100D No.14	1000	135	215/220	195/200	2	17.4
23015	M100D No.15	1000	135	220/225	200/205	2	17.7
23016	M100D No.16	1000	135	225/230	205/210	2	18.0
23017	M100D No.17	1000	135	230/235	210/215	2	18.3
23018	M100D No.18	1000	135	235/240	215/220	2	18.6
23019	M100D No.19	1000	135	240/245	220/225	2	18.9
23020	M100D No.20	1000	135	245/250	225/230	2	19.2
23200	M100D No.20.0*	1000	135	250	230	1/3	19.3
23201	M100D No.20.1J*	500	135	250	230	1/3	10.8
23300	M100D No.30.0*	1000	135	300	280	1/3	22.4
23301	M100D No.30.1J*	500	135	300	280	1/3	12.5

135mm

M100D 0.5m constant depth channel


100mm

M100D 1m sloping depth channel

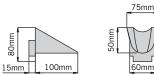
Note: The constant depth channels have an improved knockout feature, see page 35 for more information.

- * Indicates channels supplied with a preformed Ø110mm knockout for vertical outlet.
- J Indicates side knockout for 90° channel connection. Knockout on both sides of the channel.

Shallow depth channels with UltraSTEEL galvanised edge rails

M100D 075V - 0100V channel

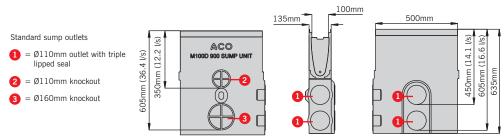
Note: V Indicates channel with cast in TPE triple lipped seals for water tight connection. See page 35 for further information. *075V and 0100V channels have a depth overall around the outlet of 80mm (075V) and 105 (0100V).


Multifunctional endcap (closing/inlet/outlet)

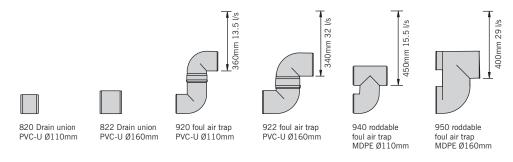
			Width overall	Depth	Spigot length		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23404	M100D No.306 universal endcap	-	135	75/300	50	-	0.16
	100mm 75mm	- ACC - TO -		135mm			

The universal end cap can be cut down to suit all M100D channels. See page 36 for further information.

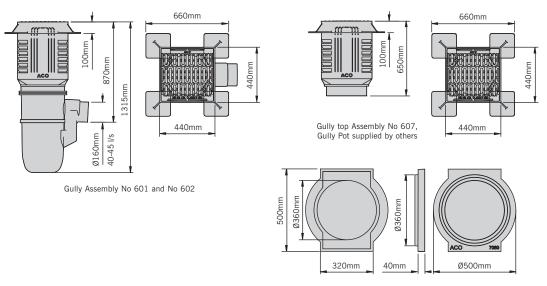
Step Connector


Product code	Description	Length (mm)	Width overall (mm)		Invert depth (mm)		Weight (kg)
12601	M100D No.123 50mm step connector	100	75	50	-	-	0.4
			7	 5mm			

Note: For information on the step connector functionality see page 36.


Sump unit with UltraSTEEL™ galvanised edge rails

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)		Weight (kg)
	M100D universal sump with						
23410	plastic silt bucket	500	135	635	615	-	32.8


Foul air traps

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
0056	820 Drain union PVC –U Ø110mm (max 12.2 / 16.6 l/s)	100	110	-	350-605	-	0.14
0058	822 Drain union PVC –U Ø160mm (max 36.5 l/s)	100	160	-	605	-	0.53
2640	920 foul air trap PVC –U Ø110mm (max 13.5 l/s)	-	110	-	360	-	0.5
2638	922 foul air trap PVC –U Ø160mm (max 32 l/s)	-	160	-	340	-	1.9
7931	940 Roddable foul air trap MDPE Ø110mm (max 15.5 l/s)	-	110	-	450	-	0.56
7932	950 Roddable foul air trap MDPE Ø160mm (max 29 l/s)	-	160	-	400	-	0.83

Universal Gully and accessories

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
33601	Gully assembly and bucket 601	440	440	1315	870	-	78.8
33602	Gully assembly no bucket 602	440	440	1315	870	-	77.4
33607	Gully top assembly 607	440	440	650	-	-	73.1
33605	Base unit 605	Ø375	Ø375	750	310	-	4.3
33603	Intermediate unit 603	440	440	515	-	-	5.1
33604	Grating and frame 604	440	440	100	-	-	69.5
7060	Connector 615	500	Ø500	40	-	-	7
33606	Bucket polythene 606	Ø275	Ø275	250	-	-	1.4

ACO Drainlock™ Gratings

Grating selection

All channels within the ACO MultiDrain MD range are certified to BS EN 1433: 2002 Load Class D 400. The system has a wide range of gratings suitable for use in a variety of applications from Load Class A15 to D 400. Refer to the chart on page 3 for load classes and typical applications. Please note when selecting a grating careful consideration should be given to the application requirement. Each grating has a certified load class which, once installed with the channel determines the system's load class.

ACO Drainlock™

Fitted as standard to ACO MultiDrain MD gratings, this fast locking device removes the need for bolts and bars and improves the channels hydraulic capacity. The Drainlock mechanism simply clips into the channel edge rail for rapid installation. An installation guide is shown opposite.

Anti-shunt mechanism

A selection of the ACO Drainlock gratings are fitted with an anti-shunt mechanism that restricts unwanted grating movement when installed. This feature improves the durability and the aesthetics of the system. See figure 2 for details

Security Locking

In areas such as schools and prisons, where unwanted grating removal needs to be restricted, a security locking can be used in conjunction with the following gratings; on ACO M100D, 12680 and 23405 on ACO M150D, 23161 and on ACO M200D 23221. The system is fitted to the gratings by two M6 security screws and clamps the grating in place preventing removal. See figure 5 & 6 for details. Security locking key for installation and removal supplied separately.

Fitting the grating

To install, align the grating onto the channel

Align anti-shunt detail with recess

Push or stand on the grating until it clicks into place

ACO Drainlock locking mechanism fastens into channel

Security locking

Fix the M6 security screws and clamp the grating as shown.

Place grating into the channel and tighten the fixing using the security locking key

Removal of grating

Insert tool as shown.

Drainlock lifting tool available part no 1367

Pull upwards to unlock grating

Technical Data

Gratings for use with ACO MultiDrain™ M100D channels with UltraSTEEL™ galvanised edge rails.

Gratings for Load Class A 15 applications

Product		Length	Width	Depth	Slot width /	Intake area	Anti-shunt	Weight
code	Description	(mm)	overall (mm)	overall (mm)	hole dia (mm)	mm²/m	feature	(kg)
12610	Slotted galvanised steel 400DL	1000	123	21	10	31200	n/a	2.2
12611	Slotted galvanised steel 402DL	500	123	21	10	31200	n/a	1
12666	Perforated galvanised steel 12666DL	1000	123	21	6	17800	n/a	2.2
12667	Perforated galvanised steel 12667DL	500	123	21	6	17800	n/a	1

12666DL / 12667DL Perforated galvanised steel

C 250

Gratings for Load Class C 250 applications

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Slot width / hole dia (mm)	Intake area mm²/m	Anti-shunt feature	Weight (kg)
12680	Heelguard [™] composite - black 522DL 6	500	123	21	8	14250	Yes	1.2
12673	Intercept ductile iron 507DL	500	123	21	31 x 12	43000	Yes	3.5
12614	Slotted galvanised steel 423DL	1000	123	21	10	31200	n/a	4.3
12615	Slotted galvanised steel 424DL	500	123	21	10	31200	n/a	2.2
12656	Perforated galvanised steel 12656DL	1000	123	21	6	17800	n/a	2.2
12657	Perforated galvanised steel 12657DL	500	123	21	6	17800	n/a	1
12618	Mesh galvanised steel 410DL	1000	123	21	25 x 12	88000	Yes	3.1
12619	Mesh galvanised steel 412DL	500	123	21	25 x 12	88000	Yes	1.5

507DI

intercept ductile iron

423DL / 424DL 12656DL / 12657DL Slotted galvanised steel Perforated galvanised steel

410DL / 412DL Mesh galvanised steel

Gratings for Load Class C 250 / D 400 applications

Product code	Description	Length (mm)	1.0	Depth overall (mm)	Slot width / hole dia (mm)	Intake area mm²/m	Anti-shunt feature	Weight (kg)
23405	Heelguard [™] ductile iron 23405DL 6	500	123	21	8	25400	Yes	4.2
23406	Ductile iron solid cover 23406DL	500	123	21	n/a	n/a	Yes	4.5
23408	Slotted ductile iron 23408DL	500	123	21	12	36200	Yes	3.8

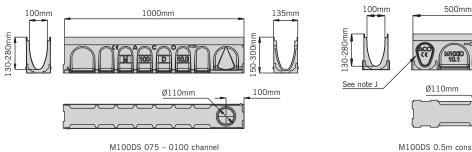
Grating accessories

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23415	Drainlock security locking assembly	n/a	n/a	n/a	n/a	n/a	0.1
23416	Drainlock security key	n/a	n/a	n/a	n/a	n/a	0.01
1367	Drainlock grating lifting tool 835	n/a	n/a	n/a	n/a	n/a	0.1

ACO MultiDrain™ MD System

Technical Data

ACO MultiDrain™ M100DS channels with stainless steel edge rails

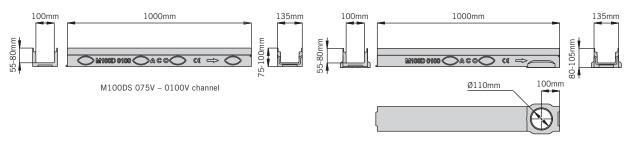

ACO MultiDrain™ M100DS channels are manufactured from polymer concrete, a tough and robust material which provides high chemical resistance. For improved aesthetics and performance, the channels listed below are provided with integral stainless steel (Grade 304) protective edge rails.

These channels are available in constant depth and shallow depth units.

For the ACO MultiDrain™ M100DS range of gratings to suit these channels please refer to page 14.

Constant depth channels with stainless steel edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
24000	M100DS No. 0.0*	1000	135	150	130	1/3	14.9
24050	M100DS No. 0.1J*	500	135	150	130	1/3	8.6
24100	M100DS No.10.0*	1000	135	200	180	1/3	17.9
24101	M100DS No.10.1J*	500	135	200	180	1/3	10.2
24200	M100DS No.20.0*	1000	135	250	230	1/3	21
24201	M100DS No.20.1J*	500	135	250	230	1/3	11.8


M100DS 0.5m constant depth channel

135mm

100mm

Shallow channels with stainless steel edge rails

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
24075	M100DS No. 075	1000	135	75	55	1	10.9
24076	M100DS No. 075V	1000	135	75†	55	1	10.55
24110	M100DS No. 0100	1000	135	100	80	1	12.7
24111	M100DS No. 0100V	1000	135	100†	80	1	12.4

M100DS 075V - 100V channel

Note: The constant depth channels have an improved knockout feature, see page 35 for more information.

* Indicates channels supplied with a preformed Ø110mm knockout for vertical outlet

J Indicates side knockout for 90° channel connection. Knockout on both sides of the channel.

V Indicates channel with cast in TPE triple lipped seals for water tight connection. See page 35 for further information.

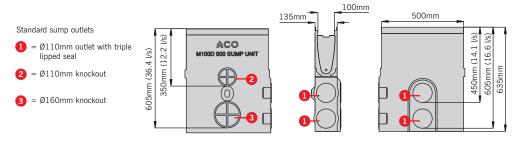
† 075V and 0100V channels have a depth overall around the outlet of 80mm (075V) and 105 (0100V).


Multifunctional endcap (closing/inlet/outlet)

			Width overall	Depth	Spigot length		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23404	M100D No.306 universal endcap	-	135	75/300	50	-	0.16
	<u> </u>	ACO DESCRIPTION OF THE PROPERTY OF THE PROPERT	300 - 150mm	135mm			

The universal end cap can be cut down to suit all M100DS channels. See page 36 for further information.

Step Connector


Product code	Description	Length (mm)	Width overall (mm)	1.1	Invert depth (mm)		Weight (kg)
12601	M100D No.123 50mm step connector	100	75	50	-	-	0.4
			7	5mm			

Note: For information on the step connector functionality see page 36.

Sump unit with stainless steel edge rails

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
	M100DS universal sump with						
24410	plastic silt bucket	500	135	635	615	-	33.9

Note: Drawing shows flow through un-trapped unions. For information on the sump unit functionality see page 37.

Gratings for Load Class A 15 applications

Product code	Description	Length (mm)		Depth overall (mm)	Slot width / hole dia (mm)	Intake area mm²/m	Anti-shunt feature	Weight (kg)
12640	Slotted stainless steel 460DL	1000	123	21	10	31200	n/a	2
12641	Slotted stainless steel 461DL	500	123	21	10	31200	n/a	1.1
12664	Perforated stainless steel 12664DL	1000	123	21	6	17800	n/a	2.9
12665	Perforated stainless steel 12665DL	500	123	21	6	17800	n/a	1.4

460DL / 461DL Slotted stainless steel

12664DL / 12665DL Perforated stainless steel

Gratings for Load Class C 250 applications

Product code	Description	Length (mm)	1.7	Depth overall (mm)	Slot width / hole dia (mm)	Intake area mm²/m	Anti-shunt feature	Weight (kg)
12644	Slotted stainless steel 470DL	1000	123	21	10	32100	n/a	2.6
12645	Slotted stainless steel 471DL	500	123	21	10	32100	n/a	1.4
12654	Perforated stainless steel 12654DL	1000	123	21	6	17800	n/a	4.8
12655	Perforated stainless steel 12655DL	500	123	21	6	17800	n/a	2.3
12648	Mesh stainless steel 430DL	1000	123	21	25 x 12	88000	Yes	4.6
12649	Mesh stainless steel 431DL	500	123	21	25 x 12	88000	Yes	2

12654DL / 12655DL Perforated stainless steel

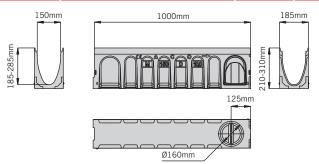
430DL / 431DL Mesh stainless steel

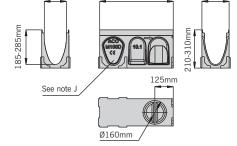
stainless steel grating accessories

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
1367	Drainlock grating lifting tool 835	n/a	n/a	n/a	n/a	n/a	0.1

ACO MultiDrain™ M150D channels are manufactured from polymer concrete, a tough and robust material which provides high chemical resistance. The channels are available in constant depth and shallow depth units.

ACO MultiDrain M150D channels listed below are provided with integral galvanised steel protective edge rails. For enhanced durability these rails are manufactured from UltraSTEEL™, a unique material that has improved strength over plain steel.

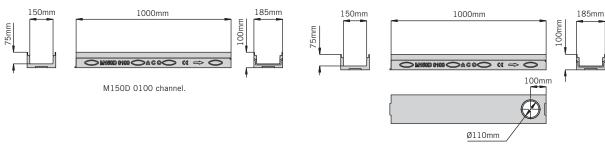

The added benefit of UltraSTEEL™ is that its greater surface area improves the bond between rail and adjacent material where a sealed system is required.


For the ACO MultiDrain $^{\circ}$ M150D range of gratings to suit these channels please refer to page 17.

185mm

Constant depth channels with UltraSTEEL™ galvanised edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23150	M150D No. 0.0*	1000	185	210	185	1/3	21.6
23153	M150D No. 0.1J*	500	185	210	185	1/3	12.7
23151	M150D No.10.0*	1000	185	260	235	1/3	25.0
23154	M150D No. 10.1J*	500	185	260	235	1/3	14.6
23152	M150D No.20.0*	1000	185	310	285	1/3	28.3
23155	M150D No. 20.1J*	500	185	310	285	1/3	16.4


150mm

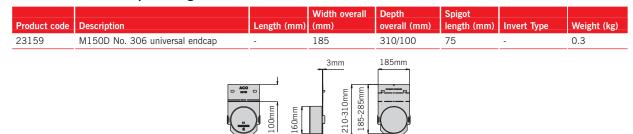
M150D 1m constant depth channel

M150D 0.5m constant depth channel

Shallow depth channels with UltraSTEEL galvanised edge rails

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
23156	M150D No. 0100	1000	185	100	75	1	15.0
23157	M150D No. 0100V	1000	185	100	75	1	14.2

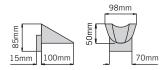
M150D 0100V channel


Note: The constant depth channels have an improved knockout feature, see page 35 for more information.

- * Indicates channels supplied with a preformed Ø160mm knockout for vertical outlet.
- V Indicates channel with cast in TPE triple lipped seals for water tight connection. See page 35 for further information.
- J Indicates side knockout for 90° channel connection. Knockout on both sides of the channel.

ACO MultiDrain[™] MD System

Technical Data


Multifunctional endcap (closing/inlet/outlet)

The universal end cap can be cut down to suit all M150D channels. See page 36 for further information.

Step Connector

Product code	Description	Length (mm)		Stepped depth (mm)	Invert depth (mm)	Invert Type	Weight (kg)
13001	M150D No.123 50mm Step connector	100	98	50	-	-	0.5

Note: For information on the step connector functionality see page 36.

Sump unit with UltraSTEEL galvanised edge rails

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)		Weight (kg)
	M150D universal sump with						
23158	plastic silt bucket	500	185	735	715	-	44

Standard sump outlets

1 = Ø110mm outlet with triple lipped seal

2 = Ø160mm outlet

3 = Ø200mm knockout


Note: Drawing shows flow through un-trapped unions. For information on the sump unit functionality see page 37.

16

Gratings for Load Class C 250 applications

Product			Width overall	Depth	Slot width	Intake area	Anti-shunt	Weight
code	Description	Length (mm)	(mm)	overall (mm)	/hole dia (mm)	mm²/m	feature	(kg)
13073	Intercept ductile iron 13073DL	500	173	21	12 x 30	59500	Yes	5.3
13018	Mesh galvanised steel 13018DL	1000	173	30	23 x 17	115100	Yes	7.4
13019	Mesh galvanised steel 13019DL	500	173	30	23 x 17	115100	Yes	3.7

13073DL Intercept ductile iron

13018DL / 13019DL Mesh galvanised steel

Gratings for Load Class C 250 / D 400 applications

Product			Width overall	Depth	Slot width	Intake area	Anti-shunt	Weight
code	Description	Length (mm)	(mm)	overall (mm)	/hole dia (mm)	mm²/m	feature	(kg)
23161	Heelguard [™] ductile iron 23161DL 8	500	173	28	8	40000	Yes	6.8
23160	Ductile iron solid cover 23160DL	500	173	28	n/a	n/a	Yes	6.7
23164	Slotted ductile iron 23164DI	500	173	28	12	57664	Yes	6.4

23160DL Ductile iron solid cover

23164DL Slotted ductile iron

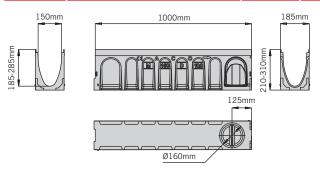
Grating accessories

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23165	Drainlock security locking assembly	n/a	n/a	n/a	n/a	n/a	0.1
23416	Drainlock security key	n/a	n/a	n/a	n/a	n/a	0.01
1367	Drainlock grating lifting tool 835	n/a	n/a	n/a	n/a	n/a	0.1

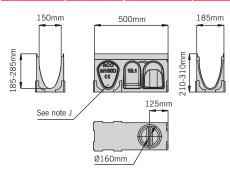
ACO MultiDrain™ MD System

Technical Data

ACO MultiDrain™ M150DS channels with stainless steel edge rails

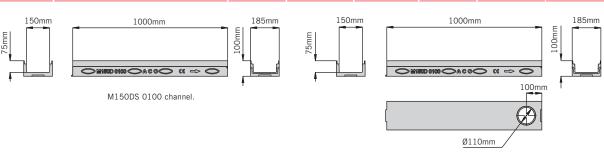

ACO MultiDrain M150DS channels are manufactured from polymer concrete, a tough and robust material which provides high chemical resistance. For improved aesthetics and performance, the channels listed below are provided with integral stainless steel (Grade 304) protective edge rails.

These channels are available in constant depth and shallow depth units.


For the ACO MultiDrain M150DS range of gratings to suit these channels please refer to page 20.

Constant depth channels with stainless steel edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
24150	M150DS No. 0.0*	1000	185	210	185	1/3	23.3
24153	M150DS No. 0.1J*	500	185	210	185	1/3	13.7
24151	M150DS No.10.0*	1000	185	260	235	1/3	26.7
24154	M150DS No. 10.1J*	500	185	260	235	1/3	15.6
24152	M150DS No.20.0*	1000	185	310	285	1/3	30.0
24155	M150DS No. 20.1J*	500	185	310	285	1/3	17.4

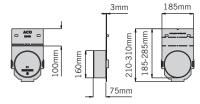

M150DS 1m constant depth channel

M150DS 0.5m constant depth channel

Shallow depth channels with stainless steel edge rails

					Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
24156	M150DS No. 0100	1000	185	100	75	1	16.7
24157	M150DS No. 0100V	1000	185	100	75	1	15.9
24157	M150D2 N0. 0100V	1000	185	100	/5	1	15.9

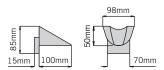
M150DS 0100V channel


Note: The constant depth channels have an improved knockout feature, see page 35 for more information.

- * Indicates channels supplied with a preformed Ø160mm knockout for vertical outlet.
- J Indicates side knockout for 90° channel connection. Knockout on both sides of the channel.
- V Indicates channel with cast in TPE triple lipped seals for water tight connection. See page 35 for further information.

18

Multifunctional endcap (closing/inlet/outlet)


Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Spigot length (mm)	Invert Type	Weight (kg)
23159	M150D No. 306 universal endcap	-	185	310/100	75	-	0.3

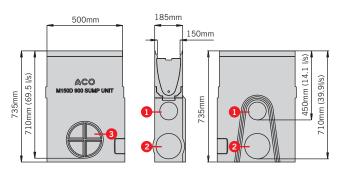
The universal end cap can be cut down to suit all M150DS channels. See page 36 for further information.

Step Connector

			Width overall	Stepped	Invert depth		
Product code	Description	Length (mm)	(mm)	depth (mm)	(mm)	Invert Type	Weight (kg)
13001	M150D No.123 50mm Step connector	100	98	50	-	-	0.5

Note: For information on the step connector functionality see page 36.

Sump unit with stainless steel edge rails


Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
	M150DS universal sump with						
24158	plastic silt bucket	500	185	735	715	-	45

Standard sump outlets

= Ø110mm outlet with triple lipped seal

= Ø160mm outlet

= Ø200mm knockout

Note: Drawing shows flow through un-trapped unions. For information on the sump unit functionality see page 37.

ACO MultiDrain[™] MD System

Technical Data

Gratings for use with ACO MultiDrain™ M150DS channels with stainless steel edge rails

Grating for Load Class C 250 applications

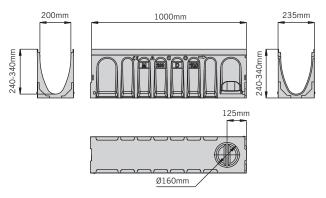
Product						Intake area	Anti-shunt	_
code	Description	Length (mm)	(mm)	overall (mm)	/hole Ø (mm)	mm²/m	feature	(kg)
13048	Mesh stainless steel 13048DL	1000	173	30	23 x 17	115100	Yes	7.4
13049	Mesh stainless steel 13049DL	500	173	31	23 x 17	115100	Yes	3.7

Grating accessories

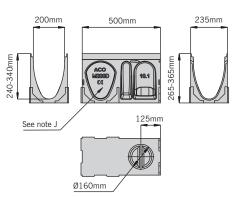
			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
1367	Drainlock grating lifting tool 835	n/a	n/a	n/a	n/a	n/a	0.1

ACO MultiDrain™ M200D channels with UltraSTEEL galvanised edge rails

ACO MultiDrain M200D channels are manufactured from polymer concrete, a tough and robust material which provides high chemical resistance. The channels are available in constant depth and shallow depth units.

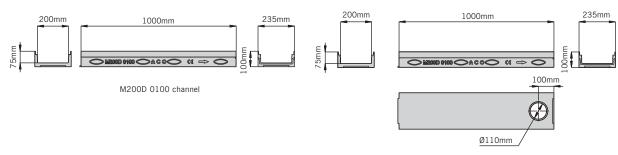

ACO MultiDrain M200D channels listed below are provided with integral galvanised steel protective edge rails. For enhanced durability these rails are manufactured from UltraSTEEL, a unique material that has improved strength over plain steel.

The added benefit of UltraSTEEL⁻ is that its greater surface area improves the bond between rail and adjacent material where a sealed system is required.


For the ACO MultiDrain M200D range of gratings to suit these channels please refer to page 23.

Constant depth channels with UltraSTEEL galvanised edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23210	M2000D No. 0.0*	1000	235	265	240	1/3	30.6
23213	M200D No. 0.1J*	500	235	265	240	1/3	17.9
23211	M200D No.10.0*	1000	235	315	290	1/3	34.2
23214	M200D No. 10.1J*	500	235	315	290	1/3	19.9
23212	M2000D No.20.0*	1000	235	365	340	1/3	37.7
23215	M2000D No. 20.1J*	500	235	365	340	1/3	21.9

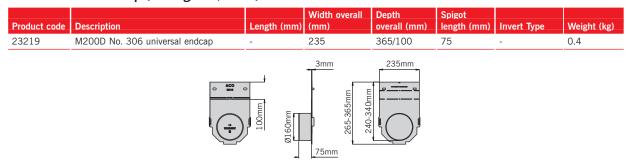

M200D 1m constant depth channel

M200D 0.5m constant depth channel

Shallow depth channels with UltraSTEEL[™] galvanised edge rails

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
23216	M200D No. 0100	1000	235	100	75	1	17.5
23217	M200D No. 0100V	1000	235	100	75	1	17.0

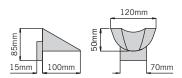
M200D 0100V channel


Note: The constant depth channels have an improved knockout feature, see page 35 for more information.

- * Indicates channels supplied with a preformed Ø160mm knockout for vertical outlet
- J Indicates side knockout for 90° channel connection. Knockout on both sides of the channel.
- V Indicates channel with cast in TPE triple lipped seals for water tight connection. See page 35 for further information.

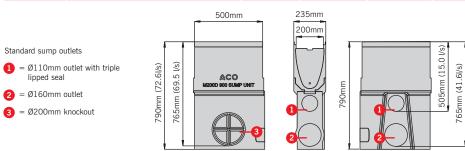
ACO MultiDrain[™] MD System

Technical Data


Multifunctional endcap (closing/inlet/outlet)

The universal end cap can be cut down to suit all M200D channels. See page 36 for further information.

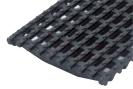
Step Connector

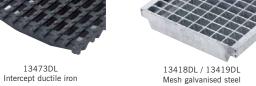

Product code	Description	Length (mm)			Invert depth (mm)	Invert Type	Weight (kg)
13401	M200D No.123 50mm Step connector	100	120	50	-	-	0.6

Note: For information on the step connector functionality see page 36.

Sump unit with UltraSTEEL galvanised edge rails

Product code	Description	Length (mm)	Width overall (mm)		Invert depth (mm)	Invert Type	Weight (kg)
	M200D universal sump with						
23218	plastic silt bucket	500	235	790	765	-	47




Note: Drawing shows flow through un-trapped unions. For information on the sump unit functionality see page 37.

Gratings for Load Class C 250 applications

Product		Length	Width overall	Depth	Slot width	Intake	Anti-shunt	Weight
code	Description	(mm)	(mm)	overall (mm)	/hole dia (mm)	area (mm²/m)	feature	(kg)
13473	Intercept ductile iron 13473DL	500	223	35	30.5 x 4	90500	Yes	7.5
13418	Mesh galvanised steel 13418DL	1000	223	40	23 x 17	154100	Yes	12
13419	Mesh galvanised steel 13419DL	500	223	40	23 x 17	154100	Yes	6

Gratings for Load Class C 250 / D 400 applications

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Slot width /hole dia (mm)	Intake area (mm²/m)	Anti-shunt feature	Weight (kg)
23221	Heelguard [™] ductile iron 23221DL 6	500	223	32	8	47300	Yes	10.3
23220	Ductile iron solid cover 23220DL	500	223	32	n/a	n/a	Yes	11
23224	Slotted ductile iron 23224DI	500	223	32	12	36200	Yes	9.8

23220DL Ductile iron solid cover

23224DL

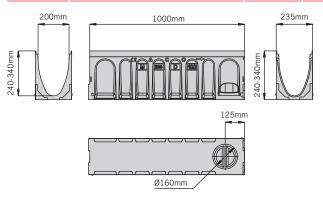
Grating accessories

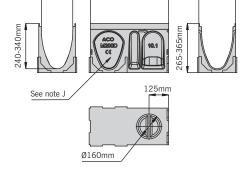
Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
23225	Drainlock security locking assembly	n/a	n/a	n/a	n/a	n/a	0.1
23416	Drainlock security key	n/a	n/a	n/a	n/a	n/a	0.01
1367	Drainlock grating lifting tool 835	n/a	n/a	n/a	n/a	n/a	0.1

ACO MultiDrain™ MD System

Technical Data

ACO MultiDrain™ M200DS channels with stainless steel edge rails


ACO MultiDrain M200DS channels are manufactured from polymer concrete, a tough and robust material which provides high chemical resistance. For improved aesthetics and performance, the channels listed below are provided with integral stainless steel (Grade 304) protective edge rails.


These channels are available in constant depth and shallow depth units.

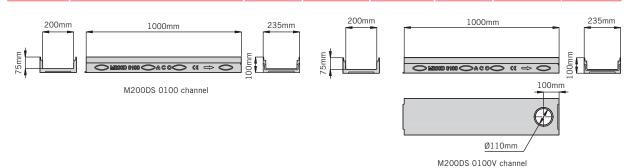
For the ACO MultiDrain M200DS range of gratings to suit these channels please refer to page 26.

Constant depth channels with stainless steel edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
24210	M200DS No. 0.0*	1000	235	265	240	1/3	32.3
24213	M200DS No. 0.1J*	500	235	265	240	1/3	18.9
24211	M200DS No.10.0*	1000	235	315	290	1/3	35.9
24214	M200DS No. 10.1J*	500	235	315	290	1/3	20.9
24212	M200DS No.20.0*	1000	235	365	340	1/3	39.4
24215	M200DS No. 20.1J*	500	235	365	340	1/3	22.9

500mm

235mm

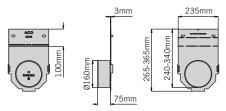

200mm

M200DS 1m constant depth channel

M200DS 0.5m constant depth channel

Shallow depth channels with stainless steel edge rails

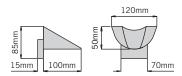
Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
24216	M200DS No. 0100	1000	235	100	75	1	19.4
24217	M200DS No. 0100V	1000	235	100	75	1	18.7


Note: The constant depth channels have an improved knockout feature, see page 35 for more information.

- * Indicates channels supplied with a preformed Ø160mm knockout for vertical outlet
- J Indicates side knockout for 90° channel connection. Knockout on both sides of the channel.
- V Indicates channel with cast in TPE triple lipped seals for water tight connection. See page 35 for further information.

24

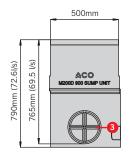
Multifunctional endcap (closing/inlet/outlet)

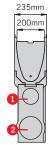

Product code	Description	Length (mm)	Width overall (mm)		Spigot length (mm)	Invert Type	Weight (kg)
23219	M200D No. 306 universal endcap	-	235	365/100	75	-	0.4

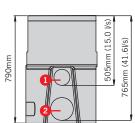
The universal end cap can be cut down to suit all M200DS channels. See page 36 for further information.

Step Connector

			Width overall	Stepped	Invert depth		
Product code	Description	Length (mm)	(mm)	depth (mm)	(mm)	Invert Type	Weight (kg)
13401	M200D No.123 50mm Step connector	100	120	50	-	-	0.6


Note: For information on the step connector functionality see page 36.


Sump unit with stainless steel edge rails


Product code	Description	Length (mm)		Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
	M200DS universal sump with						
24218	plastic silt bucket	500	235	790	765	-	48

Standard sump outlets

- = Ø110mm outlet with triple lipped seal
- = Ø160mm outlet
- 3 = Ø200mm knockout

Note: Drawing shows flow through un-trapped unions. For information on the sump unit functionality see page 37.

ACO MultiDrain[™] MD System

Technical Data

Gratings for use with ACO MultiDrain™ M200DS channels with stainless steel edge rails

Grating for Load Class C 250 applications

Product code	Description	Length (mm)		Depth overall (mm)	Slot width /hole Ø (mm)	Intake area mm/m²		Weight (kg)
13448	Mesh stainless steel 13448DL	1000	223	40	23 x 17	154100	Yes	12
13449	Mesh stainless steel 13449DL	500	223	40	23 x 17	154100	Yes	6

Grating accessories

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
1367	Drainlock grating lifting tool 835	n/a	n/a	n/a	n/a	n/a	0.1

Problem solving drainage solutions: Discreet slot drainage

ACO MultiDrain MD has a range of gratings to complement installations which require discreet slot drainage.

Designed as standard with a heelguard 10mm off set drainage inlet, ACO Brickslot is a subtle and unobtrusive grating which when combined with an ACO MultiDrain" MD channel, can be used as a solution to complement discreet drainage applications and is ideal for use against buildings facades.

Compatible with most paving materials, the vertical sides of the grating enable pavements to be laid directly to the unit's edge. Once installed the system is totally secure and not vulnerable to vandalism or loose grates making it a suitable for applications such as schools and playgrounds where grating removal can become a hazard.

The channel and ACO Brickslot grating together provide an unobtrusive continuous slot drainage system, with high hydraulic efficiency for fast removal of surface water. ACO Brickslot gratings are available in galvanised or stainless steel and suitable for use with the 100mm and 150mm wide channels in the ACO MultiDrain™ MD range.

The system includes an ACO Brickslot access unit to ensure easy maintenance and access to the drainage system, and is also fully compatible with the range of ACO MultiDrain MD accessories.

The system is suitable for applications up to and including Load Class D400 (This product is not suitable for carriageways of public roads or motorways).

Applications

- Commercial developments
- Landscaping
- Level threshold drainage
- Pedestrian precincts
- Retail developments

Discreet slot drainage

The ACO Brickslot gratings are available in two material finishes, hot –dipped galvanised and stainless steel (Grade 304), to suit the ACO MultiDrain 100mm and 150mm wide channels.

The off set grating has an heelguard 10mm drainage inlet, which is compatible with most types of paviours, setts, block and flags up to a maximum of 100mm depth.

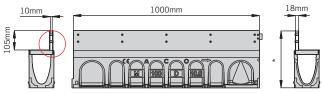
The ACO Brickslot gratings are listed in the charts below and are sold separately to the channel units. For information on the ACO MultiDrain $^{\text{TM}}$ M100D/M100DS and M150D/M150DS channels, please refer to pages 6 to 19.

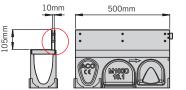
ACO Brickslot gratings suitable for use with ACO MultiDrain™ M100D/M100DS

Gratings for Load Class C 250 applications

			Width overall	Depth	Slot width	Intake area	Weight
Product code	Description	Length (mm)	(mm)	overall (mm)	/hole dia (mm)	(mm²/m)	(kg)
23460	Brickslot galvanised steel 23460	1000	135	105	10	10000	6.6
23461	Brickslot galvanised steel 23461	500	135	105	10	10000	3.3

23460 / 23461 Brickslot galvanised steel

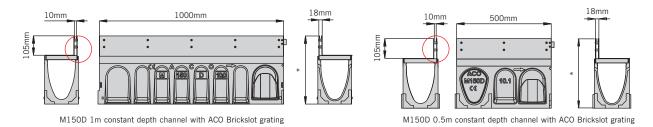



Gratings for Load Class C 250 / D 400 applications

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Slot width /hole dia (mm)	Intake area (mm²/m)	Weight (kg)
23465	Brickslot galvanised steel 23465	1000	135	105	10	10000	6.6
23466	Brickslot galvanised steel 23466	500	135	105	10	10000	3.3
23475	Brickslot stainless steel 23475	1000	135	105	10	10000	6.6
23476	Brickslot stainless steel 23476	500	135	105	10	10000	3.3

M100D 1m constant depth channel with ACO Brickslot grating

M100D 0.5m constant depth channel with ACO Brickslot grating


ACO Brickslot gratings suitable for use with ACO MultiDrain™ M150D/M150DS

Gratings for Load Class C 250 / D 400 applications

			Width overall	Depth	Slot width	Intake area	Weight
Product code	Description	Length (mm)	(mm)	overall (mm)	/hole dia (mm)	(mm²/m)	(kg)
23175	Brickslot galvanised steel 23175	1000	185	105	10	10000	7.6
23176	Brickslot galvanised steel 23176	500	185	105	10	5000	3.8
23185	Brickslot stainless steel 23185	1000	185	105	10	10000	7.6
23186	Brickslot stainless steel 23186	500	185	105	10	5000	3.8

Technical Data

The ACO Brickslot grating system has an access unit for easy maintenance and cleaning of the drainage system.

The access unit is positioned within the channel; it has a removable tray section which is lifted out of the frame by a lifting tool to gain access to the system.

The access unit is 0.5m in length and is available in the galvanised and stainless steel finishes and is suitable for use with any ACO MultiDrain $^{\text{\tiny M}}$ M100D/M100DS and M150D/M150DS wide channels.

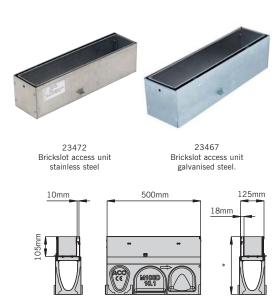
The unit has a heelguard 10mm off set drainage inlet, providing continuous aesthetic and drainage performance once installed with the drainage system.

The ACO Brickslot access units are listed in the charts below and are sold separately to the channel units. For information on the ACO MultiDrain™ M100D/M100DS and M150D/M150DS channels, please refer to pages 6 to 19.

ACO Brickslot Access covers suitable for use with ACO MultiDrain M100D and M100DS channels

Access covers for Load Class C 250 applications

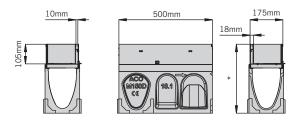
Product code	Description	Length (mm)			Slot width /hole dia (mm)	Intake area (mm²/m)	Weight (kg)
23462	Brickslot access unit galvanised steel 23462	500	135	105	10	10000	6.4



Access covers for Load Class C 250 / D 400

Product code	Description	Length (mm)	Width overall (mm)		Slot width /hole dia (mm)	Intake area (mm²/m)	Weight (kg)
23467	Brickslot access unit galvanised steel 23467	500	135	105	10	10000	6.4
23477	Brickslot access unit stainless steel 23472	500	135	105	10	10000	6.4

M100D 0.5m constant depth channel with ACO Brickslot access unit


ACO Brickslot access units for use with ACO MultiDrain™ M150D/M150DS

Access units for Load Class C 250 / D 400 applications

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Slot width /hole dia (mm)		Weight (kg)
23177	Brickslot access unit galvanised steel	500	185	105	10	10000	6.4
23187	Brickslot access unit stainless steel	500	185	105	10	10000	6.4

M150D 0.5m constant depth channel with ACO Brickslot access unit

Removal instructions.

To remove the ACO Brickslot access unit tray, insert the lifting tools as shown in figure 1. Then lift the tray vertically from the frame (figure 2). Details on the lifting tools can be found on page 11.

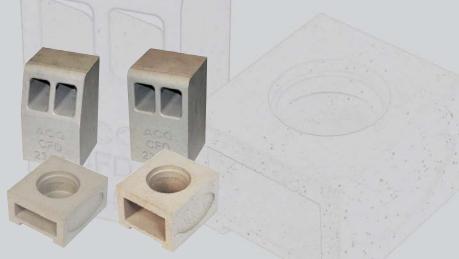


Figure 2

Specifically for use where roof drainage from down pipes is required to cross the footpath into the road gutter, ACO MultiDrain $^{\text{TM}}$ M100D/M100DS systems has a range of accessories to construct a footpath drainage system.

This system is suitable for Load Class D 400 applications

...

The ACO MultiDrain" M100D/M100DS system includes a range of accessories which provide a drainage solution ideal for areas where down pipes from roofs and gutters exit on to the pavement. The ACO Channel Footpath drainage system effectively carries water away from paved areas and across into the adjacent carriageway.

The system uses ACO MultiDrain M100D/M100DS shallow depth channels and has two types of kerb outlets and down pipe connectors to suit application requirements.

Shallow channels

ACO MultiDrain™ MD shallow depth channels are available in two sizes, 75mm and 100mm total depths (ACO M100D / M100DS 075 and ACO M100D / M100DS 0100) and have the option of galvanised or stainless steel edge rails.

Downpipe connectors

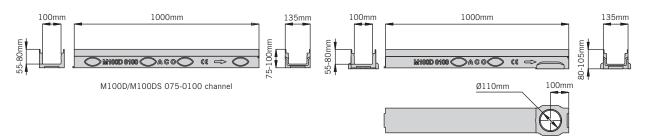
Two down pipe connectors are available to suit channel depth. Manufactured from grey polymer concrete the down pipe connector has a clear opening of Ø75mm and connects to down pipes with outside diameters of up to 82mm.

Kerb outlets

Two outlets are available to suit the kerb profile of the application, a CFD half battered kerb outlet to suit standard HB kerbs and a CFD Bull nose kerb outlet to match BN kerbs. Manufactured from grey polymer concrete the kerb outlets allow rainwater to discharge into the road gutter from this system.

Gratings

Traditionally solid ductile iron covers are selected in channel footpath drainage applications but all ACO MultiDrain M100D/M100DS gratings are suitable for use with this system. The system's load class rating is determined by the grating selected, further information of gratings within the range can be found on pages 9-14.

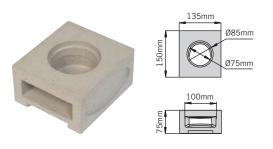


ACO MultiDrain M100D shallow depth channels with UltraSTEEL galvanised edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23075	M100D No. 075	1000	135	75	55	1	9.2
23076	M100D No. 075V	1000	135	75*	55	1	8.85
23110	M100D No. 0100	1000	135	100	80	1	11
23111	M100D No. 0100V	1000	135	100*	80	1	11

ACO MultiDrain™ M100DS shallow depth channels with stainless steel edge rails

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
24075	M100DS No. 075	1000	135	75	55	1	10.9
24076	M100DS No. 075V	1000	135	75*	55	1	10.55
24110	M100DS No. 0100	1000	135	100	80	1	12.7
24111	M100DS No. 0100V	1000	135	100*	80	1	12.4


M100D/M100DS 075V -0100V channel

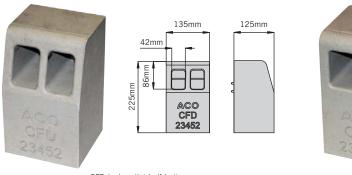
ACO MultiDrain™ MD System

Technical Data

Down pipe connectors

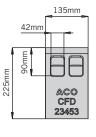
Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Invert depth (mm)	Invert Type	Weight (kg)
23450	CFD075 downpipe connector grey	150	135	75	n/a	n/a	2.4
23451	CFD0100 downpipe connector grey	150	135	100	n/a	n/a	3

CFD 075 downpipe connector


Ø85mm

Ø75mm

CFD 0100 downpipe connector


Kerb outlet profiles

			Width overall	Depth	Invert depth		
Product code	Description	Length (mm)	(mm)	overall (mm)	(mm)	Invert Type	Weight (kg)
23452	CFD kerb outlet half batter grey	125	135	225	n/a	n/a	6.7
23453	CFD kerb outlet bull nose grey	125	135	225	n/a	n/a	6.95

CFD kerb outlet half batter

125mm

CFD bull-nose kerb outlet

ACO MultiDrain™ MD Accessories - features, functions and benefits

Channel base knockout details

All ACO MultiDrain™ MD constant depth channels in the height range 0.0 to 30.0 are supplied with a pre formed knockout detail in the base of the channels. This knockout detail positioned at the male end of the channel allows a vertical connection to be made from the channel to a Ø110mm (100mm wide bore) or Ø160mm (150mm and 200mm wide bore) U-PVC pipe system. The knockout detail on the base of the channel is indicated by a "hammer" symbol. The method of removal and pipe connection is described below.

Knockout detail.

Channel side wall connection detail

An additional feature provided on all 500mm long channels are removable side wall panels, which allow channel runs to be connected together to form "T" or "L" junctions for continuous water flow through the system. Where channel connections are to be made to the side wall of these units a female joint detail is provided to aid alignment and fast installation.

Removable side wall panel.

Shallow Channels

The ACO MultiDrain™ MD shallow channels are available in either 75mm or 100mm overall depths. These units are idea for use where installation depths are restricted such in structural slabs, bridge decks and roofs. All units can sealed for watertight installations as each unit is supplied with a preformed sealant groove (see section headed watertight sealing for further details).

The shallow channels identified with a "V" such as the 075V and 0100V units have a cast-in triple lipped seal in their base for push fit watertight connections to Ø110mm U-PVC pipe. These triple lipped seals are manufactured from SEBS-TPE have excellent chemical, UV and weather resistance.

FUNCTIONS:

Step 1: Pre formed knockout detail

Step 2: Support channel around knockout detail by placing the channel on sand or soft earth for example. Tap the knockout panel from the side indicated by the Hammer symbol to remove panel.

FUNCTIONS:

Step 1: Using a disc cutter as shown, cut a cross into the panel provided. Ensure cuts extend to but not beyond the perimeter recess surrounding the removable panel.

Step 3: Use a chisel to tidy up any remaining material. Channel connection can now be made and sealed as required.

FUNCTIONS:

Step 1: Ensure Triple lipped seal and pipe spigot are clean and free from debris.

Step 2: Lubricate joint faces as required and push fit pipe into the seal. The pipe is fully fitted when the end of the pipe is flush with the internal base of the channel.

Step connector

Each width of MultiDrain MD has available a step connector manufactured from polymer concrete. This unit is used between constant depth channel joints where a stepped fall channel installation is required and takes up the 50mm height difference between units. The step connector ensures a smooth water flow within the channel system.

FUNCTIONS:

Step 1: Place step connector into the base of the deeper channel to be jointed as shown.

Step 2: Push channel joint together to lock step connector in place forming a smooth transition between units as shown.

Watertight sealing

ACO MultiDrain™ MD channels are generally installed without a particular water seal. Once butt jointed and with a concrete surround a fairly watertight installation is achieved. If however a water tight system is required each MultiDrain" MD channel is provided with a sealant groove allowing the system to be sealed by the application of a flexible sealant either during or following installation. For rainwater applications we recommend a single component, polyurethane based elastomeric joint sealant such as Debussa Masterflex 472 or Sikaflex 11FC or similar.

Application of sealant to be in accordance with the sealant manufacturers recommendations, but for guidance a typical method of application is as follows.

FUNCTIONS:

Step 1: Jointing faces of the channels to be sound and cleaned to remove all loose material, dust, oil and grease. This can be done by the use of a wire brush.

Step 2: Butt joint the channels & install as per ACO installation instructions. Ensuring joints are still clean (surfaces can be damp but no water droplets

should be evident) apply sealant with a cartridge gun approximately 5mm thick to the end face of the channel & completely fill the sealant groove. Note this type of channel can be sealed either at or following installation.

Step 3: Wipe excess sealant from the inside faces of the channel & inspect sealant groove to ensure it has been fully filled with sealant. Leave sealant to cure

before use as per the sealant manufactures recommendations.

Multifunctional endcap

A Multifunctional endcap is provided for each channel width that is designed to be used with all channel heights in each range. Manufactured from polypropylene these versatile endcaps can be adjusted on site to perform the function of a closing endcap or as an inlet/outlet endcap for connection to Ø110mm (100mm wide bore) or Ø160mm (150mm and 200mm wide bore) U-PVC pipe.

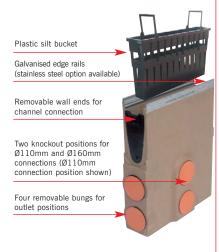
FUNCTIONS:

Closing endcap: The end cap supplied fits directly to the deepest channel within the system. All other channel heights can be accommodated by simply cutting the end cap to suit. A cutting guide is printed on the front of the end cap plate. The end cap is fastened to the channel by two clips and can be connected to either male or female channel end.

Adjusting end cap.

Fitting end cap to

Inlet & Outlet end cap: The end cap has a knockout panel which can be removed with a hammer. Once fitted to the channel the end cap performs either an inlet or outlet function and is designed to provide a connection to Ø110mm (100mm wide bore) or Ø160mm (150mm and 200mm wide bore) U-PVC pipes.



Removing knockout panel

Pipe connection to end cap

Sump unit

A polymer concrete chamber unit which provides the capacity to hold water and silt, and also provides an outlet for the channel system.

Roddable foul air traps

A U-PVC drain connector available in Ø110mm and Ø160mm for connection to foul or combined drainage. Foul air traps come complete with removable bung for rodding and are manufactured from highly durable recyclable polyethylene.

Ø160mm foul air trap

Ø110mm foul air trap

ACO Universal gully

A recycled plastic & ductile iron modular system purposely designed for use with ACO channel drainage systems up to 200mm internal width. The system provides a high capacity for retaining water and also an outlet for the drainage system.

FUNCTIONS:

Step 1: Triple lipped seals for watertight connections

Step 2: Unit wall ends can easily be removed using knife or saw

Step 3: Two knockouts for Ø110mm and Ø160mm pipe connections. For knockout removal refer to method stated on page 35 headed 'Channel side wall connection detail'.

FUNCTIONS:

Step 1: Push the foul air trap into place.

Step 2: Bung can be removed for rodding

FUNCTIONS:

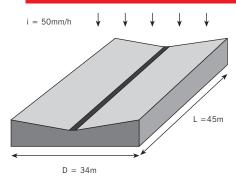
Step 1: Once installed ACO Universal Gully can be cut to match channel depth

Step 2: The cut ACO Universal Gully matches the profile of the ACO MultiDrain[™] MD channel.

Note: Full installation details are available to download from www.aco.co.uk

Design method

ACO MultiDrain MD channels are available in three widths (100mm, 150mm and 200mm) and each width is available in several depths of constant invert channel. The channels can be in runs of constant invert depth (Type 1) or in a stepped series of invert depths (Type 3). The 100mm wide M100D channel is also available with a pre-sloped invert to form channel runs of 0.5% invert slope at up to 20m length (Type 2). The run lengths of pre-sloped invert can be extended by lengths of constant invert channel.


The channels may be laid with the gratings level. If there is some longitudinal fall, then the hydraulic capacity will be increased, allowing greater spacing between outfalls.

The hydraulic capacity of channels accepting lateral inflow all along their length can be calculated by the analysis of the differential equations for spatially varied flow, a procedure that requires a computer program such as the proprietary ACO Hydro software.

For detailed designs using Hydro, please contact the ACO Design Services team. The team may also be consulted for advice where the inflow is not uniformly distributed along the channel and for channels with pre-sloped inverts.

The tables on the following page have been produced from the ACO Hydro software to facilitate a quick manual design method for the determination of the drainage requirements. The columns of drainage catchment area (A m²) are based on a rainfall intensity of 50mm/h, but can be adapted for use at any rainfall intensity. The columns of maximum flow rate (Q l/s) and maximum lateral inflow (q l/s/m) can be used at any rainfall intensity. The table of sloping invert channel capacities can be used for the design of M100D sloping invert channels.

DESIGN EXAMPLE

For a design of MultiDrain™ M100D, assume the following figures:

D = 34m (depth of catchment area)

L = 45m (length of channel run = length of catchment)

i = 50mm/h (design rainfall intensity)

Ground slope = 0%

Note that any other rainfall intensity may be used. Typical intensities (from BS EN 752) are 50mm/h for areas where some ponding could be tolerated for a few minutes after heavy rainfall, or 75mm/h where ponding cannot normally be tolerated.

1. Determine the area

Area = $L \times D = 45 \times 34 = 1530 \text{m}^2$

For a quick analysis, see the tables and the columns for Area.

 $1530 m^2$ is too large for one $45 m\ run$ of ACO MultiDrain $\ ^{\sim}\ M100D$

Try $1530 \times 1/2 = 765 \text{m}^2$ L x 1/2 = 23 m

Estimating between the rows for 20m and 30m lengths

One 23m run of ACO MultiDrain" M100D 20.0 can drain approx $800m^2$ Hence two runs can drain the $1530m^2$

Or for a more detailed analysis, determine the total flow rate, as follows

2. Determine total flow (Q)

Q = (Area x i) / 3600 = (1530 x 50) / 3600 = 21.3 l/s

3. Determine lateral inflow (q)

q = Q / L = 21.3 / 45 = 0.473 l/s/m

4. Determine suitable channel sizes and lengths

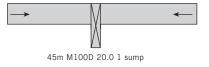
For example, would a sump at 1/3 length work with a lateral inflow of 0.473 l/s/m?

1/3 L = 15m, ACO MultiDrain MD 10.0 will be adequate

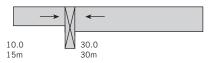
2/3 L = 30m, ACO MultiDrain MD 30.0 will be adequate

5. Check Outlet capacity

Ensure that the proposed outlet has sufficient hydraulic capacity by reference to the product technical pages.


6. Solutions

Three options are sketched (right). There are other options, including M100D sloping invert channels or a 45m length run to an outfall using M150D 20.0 channels.


Option 1

Option 2

Option 3

X Denotes sump unit

38

Hydraulic Performance Tables (for lateral flow)

Notes for ACO MultiDrain M100D Hydraulic tables

Maximum capacities for each constant depth channel, assuming uniform lateral inflow to the channel.

 $\ensuremath{\mathsf{Q}}$ (I/s) is the maximum total flow that the channel can carry.

q (l/s/m) is the maximum possible lateral inflow.

The maximum possible catchment depth is $q \div i$, where i is the rainfall intensity in $l/s/m^2$.

A (m^2) is the maximum area that can be drained at a rainfall intensity of 50mm/h (0.014 J/s/m^2) .

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO Drain Design Services Team

Please contact the Design Services Team on 01462 816666. for advice on channels with stepped or sloping inverts, channels with non-uniform inflow, or channels receiving point inflows at the end or at intermediate locations.

The Design Services Team will be pleased to assist with any technical queries, scheme designs or parts schedules.

ACO M100D constant depth channels

M100D 0	.0 Overa	ill depth 1	50mm							
Length					Slope %					
to outlet	0%			0.5%			1%			
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	
5	5.3	1.05	378	5.3	1.05	378	5.9	1.18	425	
10	4.9	0.49	353	5.5	0.55	396	6.6	0.66	475	
15	4.8	0.32	346	5.7	0.38	410	7.1	0.47	508	
20	4.5	0.23	324	5.9	0.30	425	7.4	0.37	533	
25	4.3	0.17	307	6.1	0.24	437	7.8	0.31	558	
30	4.2	0.14	302	6.2	0.21	449	8.0	0.27	572	
35	4.0	0.12	290	6.3	0.18	454	8.1	0.23	580	
40	4.0	0.10	285	6.4	0.16	461	8.2	0.21	590	
45	3.8	0.09	275	6.4	0.14	463	8.3	0.19	599	
50	3.8	0.08	270	6.5	0.13	468	8.5	0.17	612	
55	3.6	0.07	261	6.5	0.12	471	8.5	0.15	612	
60	3.6	0.06	261	6.5	0.11	471	8.5	0.14	612	

M100D 1	0.0 Ove	rall depth :	200mm								
Length					Slope %						
to outlet	0%			0.5%	0.5%			1%			
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)		
5	9.0	1.80	648	9.0	1.80	648	10.0	2.00	720		
10	8.4	0.84	605	9.4	0.94	677	11.0	1.10	792		
15	8.1	0.54	583	9.8	0.65	702	11.6	0.77	832		
20	7.7	0.39	554	9.8	0.49	706	12.0	0.60	864		
25	7.4	0.30	531	10.0	0.40	720	12.5	0.50	900		
30	7.2	0.24	518	10.2	0.34	734	12.6	0.42	907		
35	7.0	0.20	504	10.3	0.30	743	13.0	0.37	932		
40	6.8	0.17	490	10.4	0.26	749	13.2	0.33	950		
45	6.6	0.15	476	10.4	0.23	745	13.5	0.30	972		
50	6.5	0.13	468	10.5	0.21	756	13.7	0.27	983		
55	6.3	0.11	451	10.6	0.19	764	13.8	0.25	990		
60	6.1	0.10	441	10.7	0.18	769	13.8	0.23	994		

M100D 2	20.0 Ove	rall depth :	250mm							
Length					Slope %					
to outlet	0%			0.5%			1%			
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m ²)	Q (I/s)	q (l/s/m)	A (m²)	
5	13.3	2.65	954	13.3	2.65	954	14.6	2.92	1051	
10	12.5	1.25	900	13.6	1.36	979	15.8	1.58	1138	
15	11.9	0.79	853	14.0	0.93	1004	16.7	1.11	1199	
20	11.4	0.57	821	14.2	0.71	1022	17.2	0.86	1238	
25	11.0	0.44	792	14.8	0.59	1062	17.5	0.70	1260	
30	10.5	0.35	756	14.7	0.49	1058	18.0	0.60	1296	
35	10.2	0.29	733	14.7	0.42	1058	18.2	0.52	1310	
40	10.0	0.25	720	14.8	0.37	1066	18.4	0.46	1325	
45	9.7	0.22	697	14.9	0.33	1069	18.5	0.41	1328	
50	9.5	0.19	684	15.0	0.30	1080	19.0	0.38	1368	
55	9.4	0.17	673	15.1	0.28	1089	19.2	0.35	1385	
60	9.2	0.15	661	15.1	0.25	1089	19.3	0.32	1386	

For M100D 30.0 hydraulics tables see next page

ACO MultiDrain™ MD System

Technical Data

ACO M100D constant depth channels

M100D 3	30.0 Ove	rall depth 3	300mm								
Length					Slope %						
to outlet	0%			0.5%	0.5%			1%			
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)		
5	18.4	3.67	1321	18.4	3.67	1321	20.0	4.00	1440		
10	17.0	1.70	1224	18.5	1.85	1332	21.0	2.10	1512		
15	16.2	1.08	1166	18.8	1.25	1350	21.8	1.45	1566		
20	15.6	0.78	1123	19.0	0.95	1368	22.6	1.13	1627		
25	15.0	0.60	1080	19.3	0.77	1386	23.3	0.93	1674		
30	14.4	0.48	1037	19.2	0.64	1382	23.7	0.79	1706		
35	14.0	0.40	1008	19.3	0.55	1386	23.8	0.68	1714		
40	13.6	0.34	979	19.3	0.48	1390	24.0	0.60	1728		
45	13.1	0.29	946	19.4	0.43	1393	24.3	0.54	1750		
50	12.9	0.26	925	19.5	0.39	1404	24.5	0.49	1764		
55	12.7	0.23	911	19.8	0.36	1426	24.8	0.45	1782		
60	12.3	0.21	886	19.8	0.33	1426	25.2	0.42	1814		

ACO M100D Shallow Depth Channels

M100V 075 Overall depth 75mm											
	Slope %										
0%	% 0.5% 1%										
Q (I/s)	q (l/s/m)	A (m ²)	Q (l/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)			
1.3	0.25	91	1.3	0.25	91	1.3	0.25	91			
1.0	0.05	75	1.3	0.06	91	1.5	0.08	108			
0.9	0.02	63	1.3	0.03	92	1.9	0.05	137			
8.0	0.01	56	1.3	0.02	92	1.9	0.03	137			
	0% Q (l/s) 1.3 1.0 0.9	0% Q (l/s) q (l/s/m) 1.3 0.25 1.0 0.05 0.9 0.02	0% Q (l/s) q (l/s/m) A (m²) 1.3 0.25 91 1.0 0.05 75 0.9 0.02 63	0% 0.5% Q (l/s) Q (l/s/m) A (m²) Q (l/s) 1.3 0.25 91 1.3 1.0 0.05 75 1.3 0.9 0.02 63 1.3	Slope % 0% 0.5% Q (I/s) q (I/s/m) A (m²) Q (I/s) q (I/s/m) q (I/s/m) 1.3 0.25 91 1.3 0.25 1.0 0.05 75 1.3 0.06 0.9 0.02 63 1.3 0.03	Slope % 0% 0.5% Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) A (m²) 1.3 0.25 91 1.3 0.25 91 1.0 0.05 75 1.3 0.06 91 0.9 0.02 63 1.3 0.03 92	Slope % 1% 0.5% 1% 1% 0.5% 1 % 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.25	Slope % O% 0.5% 1% Q (I/s) q (I/s/m) A (m²) Q (I/s) q (I/s/m) A (m²) Q (I/s) q (I/s/m) 1.3 0.25 91 1.3 0.25 91 1.3 0.25 1.0 0.05 75 1.3 0.06 91 1.5 0.08 0.9 0.02 63 1.3 0.03 92 1.9 0.05			

M100D 0100 Overall depth 100mm												
Length		Slope %										
to outlet	0%			0.5%			1%					
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (l/s)	q (l/s/m)	A (m²)			
5	2.4	0.48	171	2.4	0.48	171	2.6	0.51	184			
20	2.0	0.10	144	2.6	0.13	187	3.4	0.17	242			
40	1.7	0.04	124	2.8	0.07	199	3.5	0.09	251			
60	1.5	0.03	108	2.8	0.05	203	3.5	0.06	252			

ACO M100D sloping depth channels

Total Flow Rate (litres / sec)											
Length to	Start channel number										
outlet (m)	1	6	11	16							
5	6.7	8.6	10.7	12.9							
10	7.8	9.7	11.8								
15	8.9	10.9									
20	10.0										

NB Constant invert depth channels can be used to extend the channel length. Please contact ACO Design Services team.

Notes on table usage

This table may be used for MultiDrain" M100D sloping invert channels. The table shows capacities for runs outfalling to sumps through units 5, 10, 15 and 20, although any unit can connect to the sump and their capacities can be estimated by interpolation.

It is assumed that the gratings are laid level. Where the run is laid with a longitudinal ground slope, the capacities can be considerably increased, or the length to outfall extended. Please contact ACO Design Services team.

Notes for ACO MultiDrain M150D Hydraulic tables

Maximum capacities for each constant depth channel, assuming uniform lateral inflow to the channel.

Q (I/s) is the maximum total flow that the channel can carry.

 $q\ (\mbox{\sc l/s/m})$ is the maximum possible lateral inflow.

The maximum possible catchment depth is q_i , where i is the rainfall intensity in $l/s/m^2$.

A (m^2) is the maximum area that can be drained at a rainfall intensity of 50mm/h (0.014 l/s/m^2) .

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO M150D constant depth channels

M150D 0	.0 Overa	ıll depth 20	05mm								
Length					Slope %						
to outlet	0%	0%			0.5%			1%			
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)		
10	13.3	1.33	958	17.4	1.74	1253	20.2	2.02	1454		
20	12.4	0.62	896	18.9	0.94	1359	22.9	1.15	1649		
30	11.8	0.39	851	19.8	0.66	1423	24.7	0.82	1778		
40	11.3	0.28	812	20.5	0.51	1475	25.8	0.65	1858		
50	10.8	0.22	778	21.0	0.42	1508	26.6	0.53	1915		
60	10.4	0.17	747	21.3	0.36	1534	27.4	0.46	1970		
70	10.1	0.14	726	21.6	0.31	1552	27.9	0.40	2006		
80	9.7	0.12	697	21.8	0.27	1572	28.3	0.35	2039		
90	9.5	0.11	680	22.0	0.24	1581	28.6	0.32	2061		
100	9.2	0.09	662	22.1	0.22	1591	29.0	0.29	2088		

M150D 1	0.0 Ove	rall depth :	255mm									
Length		Slope %										
to outlet	0%			0.5%			1%					
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)			
10	19.6	1.96	1408	21.5	2.15	1548	24.8	2.48	1786			
20	18.3	0.92	1319	23.1	1.15	1662	27.9	1.39	2007			
30	17.5	0.58	1259	24.2	0.81	1743	29.8	0.99	2147			
40	16.6	0.42	1198	25.0	0.62	1797	31.3	0.78	2255			
50	16.1	0.32	1156	25.5	0.51	1836	32.3	0.65	2322			
60	15.4	0.26	1110	25.9	0.43	1866	33.2	0.55	2389			
70	15.0	0.21	1079	26.2	0.37	1885	33.7	0.48	2429			
80	14.6	0.18	1048	26.6	0.33	1912	34.2	0.43	2460			
90	14.0	0.16	1011	26.7	0.30	1925	34.6	0.38	2488			
100	13.7	0.14	986	26.9	0.27	1937	34.9	0.35	2513			

M150D 2	M150D 20.0 Overall depth 305mm										
Length					Slope %						
to outlet	0%			0.5%			1%				
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)		
10	26.6	2.66	1915	29.1	2.91	2095	33.1	3.31	2383		
20	25.0	1.25	1800	30.8	1.54	2218	36.6	1.83	2635		
30	23.9	0.80	1717	32.0	1.07	2300	39.0	1.30	2808		
40	22.8	0.57	1639	33.0	0.82	2373	40.6	1.02	2926		
50	22.0	0.44	1580	33.7	0.67	2423	42.0	0.84	3024		
60	21.2	0.35	1525	34.0	0.57	2445	42.9	0.72	3089		
70	20.4	0.29	1472	34.4	0.49	2480	43.8	0.63	3150		
80	19.9	0.25	1434	34.6	0.43	2494	44.3	0.55	3191		
90	19.3	0.21	1387	34.9	0.39	2514	44.8	0.50	3227		
100	18.8	0.19	1354	35.1	0.35	2527	45.2	0.45	3254		

For M150D Shallow channel hydraulics tables see next page

ACO MultiDrain™ MD System

Technical Data

ACO M150D shallow depth channels

M150D (0100 Shallow Channel - Overall depth 100mm										
Length					Slope %						
to outlet	0%			0.5%			1%	1%			
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)		
10	4.2	0.42	305	4.5	0.45	323	5.6	0.56	402		
20	3.9	0.19	279	5.0	0.25	363	6.5	0.32	467		
30	3.6	0.12	261	5.3	0.18	382	6.6	0.22	475		
40	3.4	0.09	245	5.4	0.14	392	7.2	0.18	518		
50	3.3	0.07	234	5.6	0.11	400	8.0	0.16	574		
60	3.1	0.05	225	5.7	0.10	410	8.6	0.14	622		
70	2.9	0.04	212	5.7	0.08	413	9.2	0.13	662		
80	2.8	0.04	202	5.8	0.07	420	9.6	0.12	695		
90	2.6	0.03	188	5.9	0.07	421	10.2	0.11	732		
100	2.6	0.03	187	5.9	0.06	425	10.5	0.11	756		

Notes for ACO MultiDrain M200D Hydraulic tables

Maximum capacities for each constant depth channel, assuming uniform lateral inflow to the channel.

Q (I/s) is the maximum total flow that the channel can carry.

 $q\mbox{ (I/s/m)}$ is the maximum possible lateral inflow.

The maximum possible catchment depth is q_i , where i is the rainfall intensity in $l/s/m^2$.

A (m^2) is the maximum area that can be drained at a rainfall intensity of 50mm/h (0.014 l/s/m^2) .

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO M200D constant depth channels

M200D 0.0 Overall depth 260mm										
				Slope %						
0%			0.5%			1%				
Q (I/s)	q (l/s/m)	A (m²)	Q (l/s)	q (l/s/m)	A (m ²)	Q (l/s)	q (l/s/m)	A (m²)		
25.5	1.27	1835	32.2	1.61	2318	38.9	1.94	2799		
23.5	0.59	1693	35.4	0.89	2552	44.4	1.11	3197		
22.1	0.37	1590	37.3	0.62	2687	47.6	0.79	3426		
21.0	0.26	1515	38.6	0.48	2776	49.8	0.62	3588		
19.9	0.20	1433	39.3	0.39	2830	51.1	0.51	3679		
19.1	0.16	1374	40.1	0.33	2886	52.1	0.43	3750		
18.3	0.13	1320	40.5	0.29	2913	52.6	0.38	3790		
17.6	0.11	1267	41.0	0.26	2949	52.8	0.33	3802		
16.7	0.09	1205	41.2	0.23	2968	52.9	0.29	3810		
16.4	0.08	1181	41.4	0.21	2981	53.0	0.27	3816		
	0% Q (l/s) 25.5 23.5 22.1 21.0 19.9 19.1 18.3 17.6 16.7	Q (l/s) q (l/s/m) 25.5 1.27 23.5 0.59 22.1 0.37 21.0 0.26 19.9 0.20 19.1 0.16 18.3 0.13 17.6 0.11 16.7 0.09	0% 4 (l/s/m) A (m²) 25.5 1.27 1835 23.5 0.59 1693 22.1 0.37 1590 21.0 0.26 1515 19.9 0.20 1433 19.1 0.16 1374 18.3 0.13 1320 17.6 0.11 1267 16.7 0.09 1205	0% 0.5% Q (l/s) q (l/s/m) A (m²) Q (l/s) 25.5 1.27 1835 32.2 23.5 0.59 1693 35.4 22.1 0.37 1590 37.3 21.0 0.26 1515 38.6 19.9 0.20 1433 39.3 19.1 0.16 1374 40.1 18.3 0.13 1320 40.5 17.6 0.11 1267 41.0 16.7 0.09 1205 41.2	Slope % 0% 0.5% Q (Vs) q (Vs/m) A (m²) Q (Vs) q (Vs/m) 25.5 1.27 1835 32.2 1.61 23.5 0.59 1693 35.4 0.89 22.1 0.37 1590 37.3 0.62 21.0 0.26 1515 38.6 0.48 19.9 0.20 1433 39.3 0.39 19.1 0.16 1374 40.1 0.33 18.3 0.13 1320 40.5 0.29 17.6 0.11 1267 41.0 0.26 16.7 0.09 1205 41.2 0.23	Slope % 0% 0.5% Q (/s) q (//s/m) A (m²) Q (//s) q (//s/m) A (m²) 25.5 1.27 1835 32.2 1.61 2318 23.5 0.59 1693 35.4 0.89 2552 22.1 0.37 1590 37.3 0.62 2687 21.0 0.26 1515 38.6 0.48 2776 19.9 0.20 1433 39.3 0.39 2830 19.1 0.16 1374 40.1 0.33 2886 18.3 0.13 1320 40.5 0.29 2913 17.6 0.11 1267 41.0 0.26 2949 16.7 0.09 1205 41.2 0.23 2968	Slope % 0% 0.5% 1% Q (Vs) q (Vs/m) A (m²) Q (Vs) q (Vs/m) A (m²) Q (Vs) 25.5 1.27 1835 32.2 1.61 2318 38.9 23.5 0.59 1693 35.4 0.89 2552 44.4 22.1 0.37 1590 37.3 0.62 2687 47.6 21.0 0.26 1515 38.6 0.48 2776 49.8 19.9 0.20 1433 39.3 0.39 2830 51.1 19.1 0.16 1374 40.1 0.33 2886 52.1 18.3 0.13 1320 40.5 0.29 2913 52.6 17.6 0.11 1267 41.0 0.26 2949 52.8 16.7 0.09 1205 41.2 0.23 2968 52.9	Slope % O% 1% Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) A (m²) Q (l/s/m) Q (l/s) q (l/s/m) 25.5 1.27 1835 32.2 1.61 2318 38.9 1.94 23.5 0.59 1693 35.4 0.89 2552 44.4 1.11 22.1 0.37 1590 37.3 0.62 2687 47.6 0.79 21.0 0.26 1515 38.6 0.48 2776 49.8 0.62 19.9 0.20 1433 39.3 0.39 2830 51.1 0.51 19.1 0.16 1374 40.1 0.33 2886 52.1 0.43 18.3 0.13 1320 40.5 0.29 2913 52.6 0.38 17.6 0.11 1267 41.0 0.26 2949 52.8 0.33 16.7 0.09 1205 41.2		

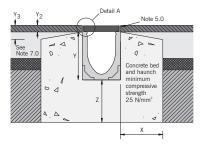
M200D 10.0 Overall depth 310mm									
Length	Slope %								
to outlet	0%			0.5%			1%		
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)
20	34.5	1.73	2485	42.8	2.14	3082	50.9	2.55	3666
40	32.1	0.80	2313	46.6	1.16	3352	58.0	1.45	4176
60	30.2	0.50	2173	49.0	0.82	3529	61.7	1.03	4441
80	28.6	0.36	2062	50.3	0.63	3623	64.3	0.80	4631
100	27.3	0.27	1966	51.3	0.51	3694	66.3	0.66	4774
120	26.0	0.22	1875	52.1	0.43	3750	67.7	0.56	4873
140	24.9	0.18	1794	52.8	0.38	3800	69.0	0.49	4969
160	24.3	0.15	1751	53.3	0.33	3836	69.8	0.44	5023
180	23.4	0.13	1685	53.6	0.30	3862	70.7	0.39	5093
200	22.6	0.11	1627	53.8	0.27	3874	71.4	0.36	5141

M200D 20.0 Overall depth 360mm								
Slope %								
0%			0.5%			1%		
Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)
44.6	2.23	3213	54.3	2.71	3907	63.7	3.19	4589
41.4	1.04	2984	58.6	1.46	4216	71.8	1.79	5167
39.1	0.65	2812	61.1	1.02	4398	76.4	1.27	5504
37.0	0.46	2667	63.0	0.79	4533	79.6	1.00	5731
35.3	0.35	2542	64.3	0.64	4630	81.7	0.82	5882
33.8	0.28	2436	65.0	0.54	4683	83.8	0.70	6031
32.4	0.23	2330	65.5	0.47	4717	85.1	0.61	6129
31.5	0.20	2269	66.1	0.41	4758	86.2	0.54	6209
30.4	0.17	2190	66.4	0.37	4782	87.1	0.48	6273
29.6	0.15	2131	66.8	0.33	4810	87.8	0.44	6322
	0% Q (l/s) 44.6 41.4 39.1 37.0 35.3 33.8 32.4 31.5 30.4	0% Q (l/s) q (l/s/m) 44.6 2.23 41.4 1.04 39.1 0.65 37.0 0.46 35.3 0.35 33.8 0.28 32.4 0.23 31.5 0.20 30.4 0.17	0% 4 (l/s/m) A (m²) 44.6 2.23 3213 41.4 1.04 2984 39.1 0.65 2812 37.0 0.46 2667 35.3 0.35 2542 33.8 0.28 2436 32.4 0.23 2330 31.5 0.20 2269 30.4 0.17 2190	0% 0.5% Q (l/s) q (l/s/m) A (m²) Q (l/s) 44.6 2.23 3213 54.3 41.4 1.04 2984 58.6 39.1 0.65 2812 61.1 37.0 0.46 2667 63.0 35.3 0.35 2542 64.3 33.8 0.28 2436 65.0 32.4 0.23 2330 65.5 31.5 0.20 2269 66.1 30.4 0.17 2190 66.4	Slope % 0% 0.5% Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) 44.6 2.23 3213 54.3 2.71 41.4 1.04 2984 58.6 1.46 39.1 0.65 2812 61.1 1.02 37.0 0.46 2667 63.0 0.79 35.3 0.35 2542 64.3 0.64 33.8 0.28 2436 65.0 0.54 32.4 0.23 2330 65.5 0.47 31.5 0.20 2269 66.1 0.41 30.4 0.17 2190 66.4 0.37	Slope % 0% 0.5% Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) A (m²) 44.6 2.23 3213 54.3 2.71 3907 41.4 1.04 2984 58.6 1.46 4216 39.1 0.65 2812 61.1 1.02 4398 37.0 0.46 2667 63.0 0.79 4533 35.3 0.35 2542 64.3 0.64 4630 33.8 0.28 2436 65.0 0.54 4683 32.4 0.23 2330 65.5 0.47 4717 31.5 0.20 2269 66.1 0.41 4758 30.4 0.17 2190 66.4 0.37 4782	Slope % 0% 0.5% 1% Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) A (m²) Q (l/s) 44.6 2.23 3213 54.3 2.71 3907 63.7 41.4 1.04 2984 58.6 1.46 4216 71.8 39.1 0.65 2812 61.1 1.02 4398 76.4 37.0 0.46 2667 63.0 0.79 4533 79.6 35.3 0.35 2542 64.3 0.64 4630 81.7 33.8 0.28 2436 65.0 0.54 4683 83.8 32.4 0.23 2330 65.5 0.47 4717 85.1 31.5 0.20 2269 66.1 0.41 4758 86.2 30.4 0.17 2190 66.4 0.37 4782 87.1	Slope % O% 1% Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) A (m²) Q (l/s/m) Q (l/s) q (l/s)

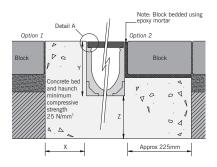
For M200D Shallow channel hydraulics tables see next page

ACO MultiDrain System

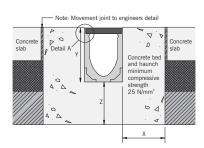
Technical Data

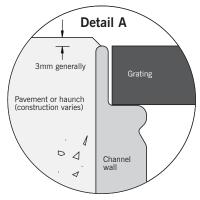

ACO M200D shallow depth channels

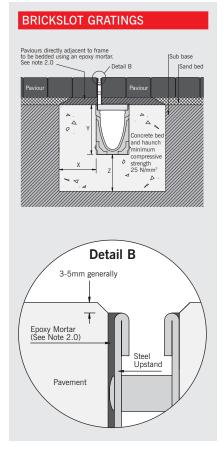
M200D 0100 Shallow Channel - Overall depth 100mm										
Length	Slope %									
to outlet	0%			0.5%	0.5%			1%		
(m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	
20	5.3	0.27	383	6.9	0.34	495	8.9	0.45	642	
40	4.7	0.12	340	7.6	0.19	544	10.7	0.27	769	
60	4.3	0.07	307	7.9	0.13	570	11.5	0.19	825	
80	4.0	0.05	288	8.2	0.10	588	12.2	0.15	876	
100	3.7	0.04	266	8.3	0.08	598	13.0	0.13	936	
120	3.6	0.03	259	8.4	0.07	605	13.3	0.11	959	
140	3.4	0.02	242	8.5	0.06	615	14.0	0.10	1008	
160	3.0	0.02	219	8.6	0.05	622	14.4	0.09	1037	
180	3.0	0.02	218	8.7	0.05	626	14.9	0.08	1076	
200	3.0	0.02	216	8.7	0.04	629	16.0	0.08	1152	


Installation details

CHANNELS WITH TRADITIONAL GRATINGS


Asphalt Pavement




Block Pavement (option 1 and 2)

Concrete Pavement

1.0 Ground Conditions:

The customer should ensure that the minimum dimensions shown are suitable for the existing ground conditions. Engineering advice may be required.

2.0 Block Pavements:

The channels must be supported laterally and therefore blocks must be restrained from movement by bedding securely. e.g. by using an Epoxy or Polymer Modified Mortar for bed and perpendicular joints (for example RONAFIX Mortar Mix C or similar). Engineering advice may be required.

3.0 Surface Cracks:

Alternate crack control and movement joints traversely within bed and haunch may reduce unsightly surface cracking. Engineering advice may be required.

4.0 Joint Sealant:

Where ACO Drain channel joints and fittings are to be sealed (where used in foul water applications or where impermeability is required, for example) contacting a sealant specialist for guidance on the most appropriate sealing compound to use.

5.0 Surface Protection:

In asphalt pavements avoid contact between compaction equipment and channel/grating. This may be achieved by ensuring that the finished surface level lies above the grating level (by at least 3mm). Stones should be removed from grating prior to laying/rolling wearing course.

6.0 General Installation Notes:

See ACO drawing E1-E01-003 for general notes on installation. This information is available on request.

7.0 Minimum Dimensions of Concrete Surround:

*e.g. parking areas for all types of road vehicle. Not suitable for carriageway of roads or motorways.

^{**}Note dashed line printed on edge rails 35mm below top.

Load Class		A 15	B 125	C 250	D 400*
	Х	100	150	150	200
	У	Full channe	el height (Les	ss Y2 where ne	ecessary)
Minimum Dimensions (mm)	Z	100	150	150	200
	Y2**	35	35	35	35
Maximum Dimensions (mm)	Y3	100	60	60	60

8.0 Grating Security Locks:

All the gratings are held in the channel units by the Drainlock fixing. In addition, gratings type 23405 (Cast Iron) and 12680/12682 (Composite) can be locked in place with an optional security locking kit. See installation drawing E1-E01-040-3.

ACO MultiDrain™ MD System

Chemical resistance chart

ACO Polymer concrete has a high resistance to dilute acids and alkalis, and are unaffected by road salt, fuel and oil, and other commonly encountered chemicals. Further details of the chemical resistance can be obtained from the ACO Design Services team or, for particular chemicals, samples of the polymer concrete can be supplied to customers for their own testing. The chemical resistance will also depend on the temperature of the effluent. Clean water should not exceed 80°C.

The resistance of the gratings and edge rails should also be considered, and stainless steel gratings and edge rails are available in the ACO MultiDrain™ MD system for aesthetically pleasing installations and for specific chemical resistance.

This chemical resistance chart refers to chemicals at ambient temperatures (20°C) and the results are for general

		Resistance:
		Polyester
Chemical medium	% conc	concrete
Acetic acid, glacial	100	No
Acetic acid	10	Yes
Acetic anhydride	100	No No
Acetone Acetone	100	No
Alum	100	Yes
Aluminium sulphate	100	Yes
Ammonium chloride	100	Yes
Ammonium nitrate	100	Yes
Ammonium phosphate	65	Yes
Ammonium sulphate	100	Yes
Aniline (aminobenzene)	100	No
Barium chloride	100	Yes
Benzaldehyde	100	No
Benzene	100	No
Benzyl alcohol	100	Yes
Benzyl chloride	100	No
Borax	100	Yes
Boric acid	100	Yes
Bromine	100	No
Bromine water	Saturated	No
Butyl acetate	100	No
Butyric acid	100	Yes
Calcium carbonate	100	Yes
Calcium chloride	100	Yes
Calcium chlorate	8	Yes
Calcium hydroxide	100	Yes
Calcium nitrate	100	Yes
Carbon disulphide	100	No
Carbon tetrachloride	100	Yes
Castor oil	100	Yes
Chlorine gas, wet	100	No
Chlorine water	Saturated	No
Chlorobenzene	100	Yes
Chloroform (trichloro-methane)	100	No
Chromic acid	12	Yes
Citric acid	100	Yes
Copper chloride	100	Yes
Copper nitrate	100	Yes
Cyclohexane	100	Yes
Diesel fuel (DERV)	100	Yes
Dimethyl formamide	100	No
Dimethyl phthalate	100	Yes
Dioctyl phthalate	100	Yes
Ethanol	95	No
Ethanolamine	100	Yes
Ethyl acetate	100	No
Ethylene glycol	100	Yes
Ferrous chloride	100	Yes
Ferric chloride	100	Yes
Ferrous sulphate	100	Yes
Formaldehyde	30	Yes
Formic acid	10	Yes
Formic acid	100	No
Fuel oil	100	Yes
Gasoline	100	Yes
Glycerine	100	Yes
Hydrazine	50	No

		Resistance
		Polyester
Chemical medium	% conc	concrete
Hydrobromic acid	48	Yes
Hydrochloric acid	10	Yes
Hydrofluoric acid	30	No Yes
Hydrogen peroxide		
Lactic acid	100	Yes
Lead acetate	100	Yes Yes
Magnesium chloride Magnesium sulphate	100	Yes
Maleic acid	100	Yes
Methyl ethyl ketone (MEK)	100	No
Motor oil	100	Yes
Nickel chloride	100	Yes
Nickel sulphate	100	Yes
Nitric acid	5	No
Nitrobenzine	100	No
Oleic acid	100	Yes
Oxalic acid	100	Yes
Perchloric acid	100	Yes
Perchlorethyline	100	Yes
Phosphoric acid	20	Yes
Phosphorus trichloride	100	No
Potassium carbonate	50	Yes
Potassium chloride	100	Yes
Potassium dichromate	100	Yes
Potassium hydroxide	100	Yes
Potassium nitrate	100	Yes
Potassium permanganate	100	No
Potassium sulphate	100	Yes
Pyridine	100	No
Sodium acetate	100	Yes
Sodium bromide	100	Yes
Sodium carbonate	35	Yes
Sodium chlorate	100	Yes
Sodium chloride	100	Yes
Sodium hydroxide		
(caustic soda)	50	No
Sodium hypochlorite	18	No
Sodium nitrate	100	Yes
Sodium nitrite	100	Yes
Sodium phosphate	10	Yes
Sodium sulphate	100	Yes
Sodium sulphide	100	Yes
Sodium sulphite	100	Yes
Sodium thiosulphate	100	Yes
Stearic acd	100	Yes
Styrene	100	No
Sulphuric acid	75	No
Sulphuric acid	50	Yes
Sulphuric acid at up to 40°C	10	Yes
Tetachloroethylene	100	Yes
Thioglycolic acid	80	Yes
Thionyl chloride	100	No
Toluene	100	Yes
Toluene sulphonic acid	Coturated	Voc
(aqueous solution)	Saturated	Yes
Trichloroacetic acid	100	Yes
Turpentine	100	Yes
Water	100	Yes
Xylene	100	Yes

Zinc sulphate

100

Yes

Specification clause

The surface drainage system shall be ACO MultiDrain" (Insert channel description as appropriate e.g. ACO M100D) channel system as supplied by ACO Technologies plc; all materials and components within the scope of this channel system shall be obtained from this manufacturer. The system shall be CE marked and fully compliant with BS EN 1433:2002, certificated to Load Class (*) as defined in BS EN 1433:2002.

A Declaration of Conformity shall be supplied to the Supervising Officer upon request. The system shall be of (100m†, 150mm¹, 200mm¹) nominal internal width, manufactured in polyester resin concrete with cast-in (galvanised/stainless†) steel edge rails. The channels shall be installed with manufacturer's grating appropriate to the specified Load Class and locked securely in place using the manufacturer's Drainlock® boltless locking system.

The system shall be installed in accordance with the manufacturer's printed instructions, and the work carried out as specified in drawing no. (... ...) and in accordance with recognised good practice. Standards of workmanship shall generally be as specified in BS EN 752 and BS 8000:Part 14:1989.

- † delete non-appropriate information
- * insert information C 250 or D 400 as appropriate

Note: A specification in NBS format is available to download from www.thenbs.com or www.aco.co.uk

Recycled content

ACO Technologies aim to incorporate as much recycled material or waste material as is practicable in their manufactured products. Typically, cast iron materials contain 40% to 90 % recycled iron, and steel products contain 25% to 33% % recycled steel. The total recycled content of each product in the ACO MultiDrain MD system will vary as the proportion of the different materials (in channels, edge rails, gratings etc) varies. As an example, ACO MultiDrain MD channels with Heelguard ductile iron gratings will contain approximately 22% by weight recycled material.

The ACO MultiDrain MD products are themselves intended for a long life with low maintenance, to reduce the need to recycle, but when eventually they are no longer needed, much of their content can be readily recycled with a very low risk of pollution to the environment.

NBS Specifications

ACO MultiDrain™ MD should be specified in selection Q10:180. Assistance in completing this clause can be found in the ACO Drain entry in NBS Plus, or please contact the ACO Drain Design Services Team.

CE Conformity

The ACO MultiDrain $^{\text{M}}$ MD System is fully certified and CE Marked to BS EN 1433:2002.

Test certificates and a declaration of conformity are available on request, please contact ACO Drain Design Services Team on 01462 816666 for further information.

ACO Technologies plc

- ACO Drain
- ACO Build
- ACO Building Drainage
- ACO Technic
- ACO Sport
- ACO Wildlife

ACO Drain

A division of ACO Technologies plc ACO Business Park, Hitchin Road, Shefford, Bedfordshire SG17 5TE

Tel: 01462 816666 Fax: 01462 815895

e-mail Sales: customersupport@aco.co.uk e-mail Technical: draintechnical@aco.co.uk

website: www.aco.co.uk

The ACO Group: A strong family you can depend on.

© May 2008 ACO Technologies plc. All reasonable care has been taken in compiling the information in this document. All recommendations and suggestions on the use of ACO products are made without guarantee since the conditions of use are beyond the control of the Company. It is the customer's responsibility to the use of ACD products are through without guarantee since the containous or use are septimisting to ensure that each product is fit for its intended purpose, and that the actual conditions of use are suitable. This brochure and any advice is provided by ACO Technologies plc (the Company) free of charge and accordingly on terms that no liability including liability for negligence will attach to the Company or its servants or agents arising out of or in connenction with or in relation to this brochure or any such advice. Any goods supplied by the Company will be supplied solely upon its standard conditions of sale, copies of which are available on request. The Company's policy of continuous product development and improvement renders specifications liable to modification. Information provided in this brochure is therefore subject to change without prior notification.

ACO CARES ABOUT THE ENVIRONMENT

Printed on material approved by the Pan European Forest Certification (PEFC) who provide a means of assuring that products come from sustainably managed forests.

